Donors will show increased willingness to donate to NGOs that are funded primarily by numerous small private donors compared to NGOs that are funded by a handful of wealthy private donors and government grants
Mechanisms: Perception of efficacy - your contribution matters as a small donor. Government funding may also imply lack of independence of government which can reduce the efficiency of an organization.
h4a_tbl_mm <- h4a_mms %>%group_by(feat_funding_short) %>%median_qi() %>%mutate(nice =glue("{fmt_decimal(avg)}<br>{build_ci(.lower, .upper)}")) %>%arrange(desc(feat_funding_short)) %>%select(feat_funding_short, nice)h4a_tbl_amces <- h4a_amces %>%group_by(feat_funding_short) %>%summarize(median_qi(avg),p_gt_0 =sum(avg >0) /n() ) %>%mutate(p_neq_0 =ifelse(y >=0, p_gt_0, 1- p_gt_0)) %>%mutate(nice =glue("{fmt_decimal(y)}<br>{build_ci(ymin, ymax)}")) %>%mutate(feat_funding_short =str_replace(feat_funding_short, " - ", "−<br>")) %>%mutate(across(starts_with("p_"), ~fmt_decimal(.))) %>%arrange(desc(feat_funding_short)) %>%select(contrast = feat_funding_short, amce_nice = nice, p_neq_0)bind_cols( h4a_tbl_mm, add_row(h4a_tbl_amces, contrast ="*(Reference)*")) %>%gt() %>%sub_missing(columns =everything(), missing_text ="—") %>%fmt_markdown(columns =c(nice, amce_nice, contrast)) %>%cols_align(align ="center", columns =everything()) %>%cols_align(align ="left", columns =c(feat_funding_short, contrast)) %>%cols_label(feat_funding_short ="Funding source", nice ="Posterior EMM",contrast ="Contrast",amce_nice ="Posterior AMCE",p_neq_0 ="*p*~direction~",.fn = md ) %>%tab_style(style =cell_text(v_align ="top"),locations =cells_body() ) %>%tab_footnote(footnote ="Values are on the percentage-point scale; single value is posterior median; 95% credible interval in brackets.",locations =cells_column_labels(columns =c(nice, amce_nice)) ) %>%tab_footnote(footnote =md("The probability of direction (*p*~direction~) is the probability that the posterior AMCE is strictly positive or negative—it is the proportion of the posterior AMCE that is the sign of the median."),locations =cells_column_labels(columns = p_neq_0) ) %>%gt_add_divider(columns = nice, style ="dashed", weight =px(1)) %>%opt_footnote_marks(marks ="standard") %>%opt_horizontal_padding(3) %>%opts_theme()
Funding source
Posterior EMM*
Contrast
Posterior AMCE*
pdirection†
Government grants
0.245
[0.238, 0.253]
Handful of wealthy private donors−
Many small donors
−0.042
[−0.052, −0.031]
1.000
Handful of wealthy private donors
0.239
[0.232, 0.247]
Government grants−
Many small donors
−0.035
[−0.046, −0.025]
1.000
Many small donors
0.281
[0.273, 0.289]
(Reference)
—
—
* Values are on the percentage-point scale; single value is posterior median; 95% credible interval in brackets.
† The probability of direction (pdirection) is the probability that the posterior AMCE is strictly positive or negative—it is the proportion of the posterior AMCE that is the sign of the median.
H4b: Relationship with host government and funding sources
Hypothesis 4b: Relationship with host government and funding sources
Donors will show increased willingness to donate to NGOs that are facing government crackdown and are funded primarily by numerous small private donors
Estimand
\[
\begin{aligned}
\theta =&\ \textbf{E}\bigl[ Y_i \mid \operatorname{do}\left( \text{Funding} = \text{Few wealthy donors or Government} \mid \text{Relationship = Under crackdown or Criticized} \right) \bigr] - \\
&\ \textbf{E}\bigl[ Y_i \mid \operatorname{do}\left( \text{Funding} = \text{Many small donors} \mid \text{Relationship = Under crackdown or Criticized} \right) \bigr]
\end{aligned}
\]
p_h4b_mms <- h4b_mms %>%ggplot(aes(x = avg, y = feat_funding_short, fill = feat_funding_short)) +stat_halfeye() +geom_vline(xintercept =0.25, color = clrs$prism[8], linetype ="dashed", linewidth =0.25) +scale_x_continuous(labels =label_percent()) +scale_y_discrete(labels =label_wrap(11)) +scale_fill_manual(values = clrs$prism[c(3, 6, 5)], guide ="none") +facet_wrap(vars(feat_govt), ncol =1) +labs(x ="Overall average predicted probability",y =NULL,fill =NULL,title ="Estimated marginal means" ) +theme(legend.position ="top",legend.justification ="left",legend.margin =margin(l =-7, t =0) )p_h4b_amces <- h4b_amces %>%ungroup() %>%separate_wider_delim( feat_funding_short,delim =" - ", names =c("feat_funding_short", "reference_level") ) %>%add_row(avg =0, feat_funding_short ="Many small donors", feat_govt ="Friendly relationship with government") %>%add_row(avg =0, feat_funding_short ="Many small donors", feat_govt ="Criticized by government") %>%add_row(avg =0, feat_funding_short ="Many small donors", feat_govt ="Under government crackdown") %>%mutate(feat_funding_short =factor(feat_funding_short, levels =levels(h4b_mms$feat_funding_short))) %>%mutate(feat_govt =factor(feat_govt, levels =levels(h4b_mms$feat_govt))) %>%ggplot(aes(x = avg, y = feat_funding_short, fill = feat_funding_short)) +stat_halfeye() +geom_vline(xintercept =0, color = clrs$prism[8], linetype ="dashed", linewidth =0.25) +scale_x_continuous(labels = label_pp) +scale_y_discrete(labels =label_wrap(11)) +scale_fill_manual(values = clrs$prism[c(3, 6, 5)], guide ="none") +facet_wrap(vars(feat_govt), ncol =1) +labs(x ="Percentage point change in probability of choice selection",y =NULL,fill =NULL,title ="Difference in estimated marginal means" )p_h4b_mms | p_h4b_amces
Code
h4b_tbl_mm <- h4b_mms %>%group_by(feat_govt, feat_funding_short) %>%median_qi() %>%mutate(nice =glue("{fmt_decimal(avg)}<br>{build_ci(.lower, .upper)}")) %>%arrange(desc(feat_govt), desc(feat_funding_short)) %>%select(feat_funding_short, feat_govt, nice)h4b_tbl_amces <- h4b_amces %>%group_by(feat_govt, feat_funding_short) %>%summarize(median_qi(avg),p_gt_0 =sum(avg >0) /n() ) %>%ungroup() %>%mutate(p_neq_0 =ifelse(y >=0, p_gt_0, 1- p_gt_0)) %>%mutate(nice =glue("{fmt_decimal(y)}<br>{build_ci(ymin, ymax)}")) %>%mutate(feat_funding_short =str_replace(feat_funding_short, " - ", "−<br>")) %>%mutate(across(starts_with("p_"), ~fmt_decimal(.))) %>%arrange(desc(feat_govt)) %>%select(contrast = feat_funding_short, diff_nice = nice, p_neq_0)bind_cols( h4b_tbl_mm, h4b_tbl_amces %>%add_row(contrast =NA, .after =2) %>%add_row(contrast =NA, .after =5) %>%add_row(contrast =NA, .after =8)) %>%mutate(feat_govt =fct_relabel(feat_govt, ~paste("Relationship with government:", .x))) %>%group_by(feat_govt) %>%gt() %>%sub_missing(columns =everything(), missing_text ="—") %>%fmt_markdown(columns =c(nice, diff_nice, contrast)) %>%cols_align(align ="center", columns =everything()) %>%cols_align(align ="left", columns =c(feat_funding_short, contrast)) %>%cols_label(feat_funding_short ="Funding source", nice ="Posterior EMM",contrast ="Contrast",diff_nice ="Posterior ∆",p_neq_0 ="*p*~direction~",.fn = md ) %>%tab_style(style =cell_text(v_align ="top"),locations =cells_body() ) %>%tab_style(style =cell_fill(color ="grey90"),locations =cells_row_groups() ) %>%tab_footnote(footnote ="Values are on the percentage-point scale; single value is posterior median; 95% credible interval in brackets.",locations =cells_column_labels(columns =c(nice, diff_nice)) ) %>%tab_footnote(footnote =md("The probability of direction (*p*~direction~) is the probability that the posterior difference in marginal means is strictly positive or negative—it is the proportion of the posterior difference in marginal means that is the sign of the median."),locations =cells_column_labels(columns = p_neq_0) ) %>%gt_add_divider(columns = nice, style ="dashed", weight =px(1)) %>%opt_footnote_marks(marks ="standard") %>%opt_horizontal_padding(3) %>%opts_theme()
Funding source
Posterior EMM*
Contrast
Posterior ∆*
pdirection†
Relationship with government: Under government crackdown
Government grants
0.200
[0.191, 0.209]
Government grants−
Many small donors
−0.031
[−0.041, −0.022]
1.000
Handful of wealthy private donors
0.195
[0.186, 0.204]
Handful of wealthy private donors−
Many small donors
−0.037
[−0.046, −0.028]
1.000
Many small donors
0.232
[0.222, 0.241]
—
—
—
Relationship with government: Criticized by government
Government grants
0.234
[0.225, 0.244]
Government grants−
Many small donors
−0.035
[−0.045, −0.024]
1.000
Handful of wealthy private donors
0.228
[0.218, 0.238]
Handful of wealthy private donors−
Many small donors
−0.041
[−0.052, −0.031]
1.000
Many small donors
0.269
[0.259, 0.280]
—
—
—
Relationship with government: Friendly relationship with government
Government grants
0.302
[0.291, 0.313]
Government grants−
Many small donors
−0.040
[−0.052, −0.028]
1.000
Handful of wealthy private donors
0.295
[0.285, 0.306]
Handful of wealthy private donors−
Many small donors
−0.047
[−0.059, −0.035]
1.000
Many small donors
0.342
[0.331, 0.354]
—
—
—
* Values are on the percentage-point scale; single value is posterior median; 95% credible interval in brackets.
† The probability of direction (pdirection) is the probability that the posterior difference in marginal means is strictly positive or negative—it is the proportion of the posterior difference in marginal means that is the sign of the median.
H4c: Relationship with host government, funding sources, and issue area
Hypothesis 4c: Relationship with host government, funding sources, and issue area
Donors will show increased willingness to donate to NGOs that are facing government crackdown and are funded primarily by numerous small private donors and work in less contentious areas (emergency response and refugee relief)
Estimand
\[
\begin{aligned}
\theta =&\ \textbf{E}\bigl[ Y_i \mid \operatorname{do}\left( \text{Funding} = \text{Few wealthy donors or Government} \mid \text{(Relationship = Under crackdown or Criticized) and (Issue = less contentious)} \right) \bigr] - \\
&\ \textbf{E}\bigl[ Y_i \mid \operatorname{do}\left( \text{Funding} = \text{Many small donors} \mid \text{(Relationship = Under crackdown or Criticized) and (Issue = less contentious)} \right) \bigr]
\end{aligned}
\]