library(tidyverse)
library(targets)
library(ggdag)
library(dagitty)
library(here)
::with_dir(here::here(), {
withrsource(tar_read(plot_funs))
source(tar_read(misc_funs))
})
update_geom_defaults(ggdag:::GeomDagText, list(family = "Noto Sans", face = "plain"))
<- 1234
my_seed set.seed(my_seed)
<- dagitty('
huge_messy_dag dag {
"Corruption[t-1]" [adjusted,pos="7.000,2.000"]
"Corruption[t-i]" [pos="2.000,2.000"]
"Corruption[t]" [pos="12.000,2.000"]
"Democracy[t-1]" [adjusted,pos="7.250,1.000"]
"Democracy[t-i]" [pos="2.250,1.000"]
"Democracy[t]" [pos="12.250,1.000"]
"Disasters[t-1]" [adjusted,pos="7.250,12.000"]
"Disasters[t-i]" [pos="2.250,12.000"]
"Disasters[t]" [pos="12.250,12.000"]
"Education[t-1]" [adjusted,pos="6.250,8.000"]
"Education[t-i]" [pos="1.250,8.000"]
"Education[t]" [pos="11.250,8.000"]
"GDP/capita[t-1]" [adjusted,pos="6.000,6.000"]
"GDP/capita[t-i]" [pos="1.000,6.000"]
"GDP/capita[t]" [pos="11.000,6.000"]
"Health[t-1]" [adjusted,pos="6.500,9.000"]
"Health[t-i]" [pos="1.500,9.000"]
"Health[t]" [pos="11.500,9.000"]
"Mortality[t-1]" [adjusted,pos="6.750,10.000"]
"Mortality[t-i]" [pos="1.750,10.000"]
"Mortality[t]" [pos="11.750,10.000"]
"Outcome[t-1]" [pos="9.000,6.500"]
"Outcome[t-i]" [pos="4.000,6.500"]
"Outcome[t]" [outcome,pos="14.000,6.500"]
"Restrictions[t-1]" [exposure,pos="8.000,7.750"]
"Restrictions[t-i]" [adjusted,pos="3.000,7.750"]
"Restrictions[t]" [pos="13.000,7.750"]
"Trade[t-1]" [adjusted,pos="6.000,7.000"]
"Trade[t-i]" [pos="1.000,7.000"]
"Trade[t]" [pos="11.000,7.000"]
"Violence[t-1]" [adjusted,pos="6.250,5.000"]
"Violence[t-i]" [pos="1.250,5.000"]
"Violence[t]" [pos="11.250,5.000"]
"`Civil liberties`[t-1]" [adjusted,pos="6.500,4.000"]
"`Civil liberties`[t-i]" [pos="1.500,4.000"]
"`Civil liberties`[t]" [pos="11.500,4.000"]
"`Internal conflict`[t-1]" [adjusted,pos="7.000,11.000"]
"`Internal conflict`[t-i]" [pos="2.000,11.000"]
"`Internal conflict`[t]" [pos="12.000,11.000"]
"`Rule of law`[t-1]" [adjusted,pos="6.750,3.000"]
"`Rule of law`[t-i]" [pos="1.750,3.000"]
"`Rule of law`[t]" [pos="11.750,3.000"]
"Corruption[t-1]" -> "Corruption[t]"
"Corruption[t-1]" -> "Outcome[t-1]"
"Corruption[t-1]" -> "Restrictions[t-1]"
"Corruption[t-i]" -> "Corruption[t-1]"
"Corruption[t-i]" -> "Outcome[t-i]"
"Corruption[t-i]" -> "Restrictions[t-i]"
"Corruption[t]" -> "Outcome[t]"
"Corruption[t]" -> "Restrictions[t]"
"Democracy[t-1]" -> "Corruption[t-1]"
"Democracy[t-1]" -> "Democracy[t]"
"Democracy[t-1]" -> "Outcome[t-1]"
"Democracy[t-1]" -> "Restrictions[t-1]"
"Democracy[t-1]" -> "`Rule of law`[t-1]"
"Democracy[t-i]" -> "Democracy[t-1]"
"Democracy[t-i]" -> "Outcome[t-i]"
"Democracy[t-i]" -> "Restrictions[t-i]"
"Democracy[t]" -> "Corruption[t]"
"Democracy[t]" -> "Outcome[t]"
"Democracy[t]" -> "Restrictions[t]"
"Democracy[t]" -> "`Rule of law`[t]"
"Disasters[t-1]" -> "Outcome[t-1]"
"Disasters[t-1]" -> "Restrictions[t-1]"
"Disasters[t-i]" -> "Outcome[t-i]"
"Disasters[t-i]" -> "Restrictions[t-i]"
"Disasters[t]" -> "Outcome[t]"
"Disasters[t]" -> "Restrictions[t]"
"Education[t-1]" -> "Education[t]"
"Education[t-1]" -> "Outcome[t-1]"
"Education[t-1]" -> "Restrictions[t-1]"
"Education[t-i]" -> "Education[t-1]"
"Education[t-i]" -> "Outcome[t-i]"
"Education[t-i]" -> "Restrictions[t-i]"
"Education[t]" -> "Outcome[t]"
"Education[t]" -> "Restrictions[t]"
"GDP/capita[t-1]" -> "GDP/capita[t]"
"GDP/capita[t-1]" -> "Outcome[t-1]"
"GDP/capita[t-1]" -> "Restrictions[t-1]"
"GDP/capita[t-i]" -> "GDP/capita[t-1]"
"GDP/capita[t-i]" -> "Outcome[t-i]"
"GDP/capita[t-i]" -> "Restrictions[t-i]"
"GDP/capita[t]" -> "Outcome[t]"
"GDP/capita[t]" -> "Restrictions[t]"
"Health[t-1]" -> "Health[t]"
"Health[t-1]" -> "Outcome[t-1]"
"Health[t-1]" -> "Restrictions[t-1]"
"Health[t-i]" -> "Health[t-1]"
"Health[t-i]" -> "Outcome[t-i]"
"Health[t-i]" -> "Restrictions[t-i]"
"Health[t]" -> "Outcome[t]"
"Health[t]" -> "Restrictions[t]"
"Mortality[t-1]" -> "Mortality[t]"
"Mortality[t-1]" -> "Outcome[t-1]"
"Mortality[t-1]" -> "Restrictions[t-1]"
"Mortality[t-i]" -> "Mortality[t-1]"
"Mortality[t-i]" -> "Outcome[t-i]"
"Mortality[t-i]" -> "Restrictions[t-i]"
"Mortality[t]" -> "Outcome[t]"
"Mortality[t]" -> "Restrictions[t]"
"Outcome[t-1]" -> "Outcome[t]"
"Outcome[t-i]" -> "Outcome[t-1]"
"Restrictions[t-1]" -> "Outcome[t-1]"
"Restrictions[t-1]" -> "Outcome[t]"
"Restrictions[t-1]" -> "Restrictions[t]"
"Restrictions[t-i]" -> "Outcome[t-1]"
"Restrictions[t-i]" -> "Outcome[t-i]"
"Restrictions[t-i]" -> "Restrictions[t-1]"
"Restrictions[t]" -> "Outcome[t]"
"Trade[t-1]" -> "Outcome[t-1]"
"Trade[t-1]" -> "Restrictions[t-1]"
"Trade[t-1]" -> "Trade[t]"
"Trade[t-i]" -> "Outcome[t-i]"
"Trade[t-i]" -> "Restrictions[t-i]"
"Trade[t-i]" -> "Trade[t-1]"
"Trade[t]" -> "GDP/capita[t]"
"Trade[t]" -> "Outcome[t]"
"Trade[t]" -> "Restrictions[t]"
"Violence[t-1]" -> "Outcome[t-1]"
"Violence[t-1]" -> "Restrictions[t-1]"
"Violence[t-1]" -> "Violence[t]"
"Violence[t-i]" -> "Outcome[t-i]"
"Violence[t-i]" -> "Restrictions[t-i]"
"Violence[t-i]" -> "Violence[t-1]"
"Violence[t]" -> "Outcome[t]"
"Violence[t]" -> "Restrictions[t]"
"`Civil liberties`[t-1]" -> "Outcome[t-1]"
"`Civil liberties`[t-1]" -> "Restrictions[t-1]"
"`Civil liberties`[t-1]" -> "`Civil liberties`[t]"
"`Civil liberties`[t-i]" -> "Outcome[t-i]"
"`Civil liberties`[t-i]" -> "Restrictions[t-i]"
"`Civil liberties`[t-i]" -> "`Civil liberties`[t-1]"
"`Civil liberties`[t]" -> "Outcome[t]"
"`Civil liberties`[t]" -> "Restrictions[t]"
"`Internal conflict`[t-1]" -> "Outcome[t-1]"
"`Internal conflict`[t-1]" -> "Restrictions[t-1]"
"`Internal conflict`[t-1]" -> "`Internal conflict`[t]"
"`Internal conflict`[t-i]" -> "Outcome[t-i]"
"`Internal conflict`[t-i]" -> "Restrictions[t-i]"
"`Internal conflict`[t-i]" -> "`Internal conflict`[t-1]"
"`Internal conflict`[t]" -> "Outcome[t]"
"`Internal conflict`[t]" -> "Restrictions[t]"
"`Rule of law`[t-1]" -> "Outcome[t-1]"
"`Rule of law`[t-1]" -> "Restrictions[t-1]"
"`Rule of law`[t-1]" -> "`Rule of law`[t]"
"`Rule of law`[t-i]" -> "Outcome[t-i]"
"`Rule of law`[t-i]" -> "Restrictions[t-i]"
"`Rule of law`[t-i]" -> "`Rule of law`[t-1]"
"`Rule of law`[t]" -> "Outcome[t]"
"`Rule of law`[t]" -> "Restrictions[t]"
}
')
<- huge_messy_dag %>%
huge_messy_dag_plot tidy_dagitty() %>%
mutate(var_type = case_when(
str_detect(name, "Outcome") ~ "Outcome",
str_detect(name, "Restrictions") ~ "Restrictions",
TRUE ~ "Z"
%>%
)) mutate(time_period = case_when(
str_detect(name, "t-1") ~ 2,
str_detect(name, "t-i") ~ 1,
TRUE ~ 3
%>%
)) mutate(arrow_color = case_when(
== "Restrictions[t-1]" & to == "Outcome[t]" ~ "#FF4136",
name TRUE ~ "grey60"
))
ggplot(huge_messy_dag_plot, aes(x = x, y = y, xend = xend, yend = yend)) +
geom_dag_edges(aes(edge_colour = arrow_color)) +
geom_dag_point(aes(color = var_type, alpha = time_period), size = 12) +
geom_dag_text(data = filter(huge_messy_dag_plot, var_type == "Outcome"),
color = "black", size = pts(9), parse = TRUE) +
geom_dag_text(data = filter(huge_messy_dag_plot, var_type == "Restrictions"),
color = "black", size = pts(9), parse = TRUE) +
geom_dag_text(data = filter(huge_messy_dag_plot, var_type == "Z"),
color = "black", size = pts(9), parse = TRUE) +
scale_color_manual(values = c("#B10DC9", "#FF851B", "grey60")) +
scale_y_reverse() +
guides(alpha = FALSE, color = FALSE) +
theme_dag()
<- dagitty('
simplerish_dag dag {
"`Human rights & politics`[t-1]" [adjusted,pos="5,1.5"]
"`Human rights & politics`[t-i]" [pos="1,1.5"]
"`Human rights & politics`[t]" [pos="9,1.5"]
"`Economics & development`[t-1]" [adjusted,pos="5,2.5"]
"`Economics & development`[t-i]" [pos="1,2.5"]
"`Economics & development`[t]" [pos="9,2.5"]
"Outcome[t-1]" [pos="6.5,1.75"]
"Outcome[t-i]" [adjusted,pos="2.5,1.75"]
"Outcome[t]" [outcome,pos="10.5,1.75"]
"Restrictions[t-1]" [exposure,pos="6,2.25"]
"Restrictions[t-i]" [adjusted,pos="2,2.25"]
"Restrictions[t]" [pos="10,2.25"]
"`Unexpected shocks`[t-1]" [adjusted,pos="5,2"]
"`Unexpected shocks`[t-i]" [pos="1,2"]
"`Unexpected shocks`[t]" [pos="9,2"]
"`Human rights & politics`[t-1]" -> "`Human rights & politics`[t]"
"`Human rights & politics`[t-1]" -> "Outcome[t-1]"
"`Human rights & politics`[t-1]" -> "Restrictions[t-1]"
"`Human rights & politics`[t-1]" -> "Restrictions[t]"
"`Human rights & politics`[t-i]" -> "`Human rights & politics`[t-1]"
"`Human rights & politics`[t-i]" -> "Outcome[t-i]"
"`Human rights & politics`[t-i]" -> "Restrictions[t-i]"
"`Human rights & politics`[t]" -> "Outcome[t]"
"`Human rights & politics`[t]" -> "Restrictions[t]"
"`Economics & development`[t-1]" -> "`Economics & development`[t]"
"`Economics & development`[t-1]" -> "Outcome[t-1]"
"`Economics & development`[t-1]" -> "Restrictions[t-1]"
"`Economics & development`[t-1]" -> "Restrictions[t]"
"`Economics & development`[t-i]" -> "`Economics & development`[t-1]"
"`Economics & development`[t-i]" -> "Outcome[t-i]"
"`Economics & development`[t-i]" -> "Restrictions[t-i]"
"`Economics & development`[t]" -> "Outcome[t]"
"`Economics & development`[t]" -> "Restrictions[t]"
"Outcome[t-1]" -> "Outcome[t]"
"Outcome[t-1]" -> "Restrictions[t]"
"Outcome[t-i]" -> "Outcome[t-1]"
"Outcome[t-i]" -> "Restrictions[t-1]"
"Restrictions[t]" -> "Outcome[t]"
"Restrictions[t-1]" -> "Outcome[t-1]"
"Restrictions[t-i]" -> "Outcome[t-i]"
"Restrictions[t-1]" -> "Outcome[t]"
"Restrictions[t-1]" -> "Restrictions[t]"
"Restrictions[t-i]" -> "Outcome[t-1]"
"Restrictions[t-i]" -> "Restrictions[t-1]"
"`Unexpected shocks`[t-1]" -> "Outcome[t-1]"
"`Unexpected shocks`[t-1]" -> "Restrictions[t-1]"
"`Unexpected shocks`[t-1]" -> "Restrictions[t]"
"`Unexpected shocks`[t-1]" -> "`Unexpected shocks`[t]"
"`Unexpected shocks`[t-i]" -> "Outcome[t-i]"
"`Unexpected shocks`[t-i]" -> "Restrictions[t-i]"
"`Unexpected shocks`[t-i]" -> "`Unexpected shocks`[t-1]"
"`Unexpected shocks`[t]" -> "Outcome[t]"
"`Unexpected shocks`[t]" -> "Restrictions[t]"
}
')
<- simplerish_dag %>%
simplerish_dag_plot tidy_dagitty() %>%
mutate(var_type = case_when(
str_detect(name, "Outcome") ~ "Outcome",
str_detect(name, "Restrictions") ~ "Restrictions",
TRUE ~ "Z"
%>%
)) mutate(time_period = case_when(
str_detect(name, "t-1") ~ 2,
str_detect(name, "t-i") ~ 1,
TRUE ~ 3
%>%
)) mutate(arrow_color = case_when(
== "Restrictions[t-1]" & to == "Outcome[t]" ~ "#FF4136",
name TRUE ~ "grey60"
))
ggplot(simplerish_dag_plot, aes(x = x, y = y, xend = xend, yend = yend)) +
geom_dag_edges(aes(edge_colour = arrow_color)) +
geom_dag_point(aes(color = var_type, alpha = time_period), size = 12) +
geom_dag_text(data = filter(simplerish_dag_plot, var_type == "Outcome"),
color = "black", size = pts(9), parse = TRUE) +
geom_dag_text(data = filter(simplerish_dag_plot, var_type == "Restrictions"),
color = "black", size = pts(9), parse = TRUE) +
geom_dag_text(data = filter(simplerish_dag_plot, var_type == "Z"),
color = "black", size = pts(9), parse = TRUE) +
scale_color_manual(values = c("#B10DC9", "#FF851B", "grey60")) +
scale_y_reverse() +
guides(alpha = FALSE, color = FALSE) +
theme_dag()
<- dagitty('
simple_dag dag {
"Outcome[t-i]" [pos="1.5,2"]
"Outcome[t-1]" [pos="3.5,2"]
"Outcome[t]" [outcome,pos="6,2"]
"Restrictions[t-i]" [pos="1,1"]
"Restrictions[t-1]" [exposure,pos="3,1"]
"Restrictions[t]" [pos="5,1"]
"Z[t-i]" [pos="1,3"]
"Z[t-1]" [pos="3,3"]
"Z[t]" [pos="5,3"]
"Outcome[t-1]" -> "Outcome[t]"
"Outcome[t-1]" -> "Restrictions[t]"
"Outcome[t-i]" -> "Outcome[t-1]"
"Outcome[t-i]" -> "Restrictions[t-1]"
"Restrictions[t]" -> "Outcome[t]"
"Restrictions[t-1]" -> "Outcome[t-1]"
"Restrictions[t-i]" -> "Outcome[t-i]"
"Restrictions[t-1]" -> "Outcome[t]"
"Restrictions[t-1]" -> "Restrictions[t]"
"Restrictions[t-i]" -> "Outcome[t-1]"
"Restrictions[t-i]" -> "Restrictions[t-1]"
"Z[t-1]" -> "Outcome[t-1]"
"Z[t-1]" -> "Restrictions[t-1]"
"Z[t-1]" -> "Restrictions[t]"
"Z[t-1]" -> "Z[t]"
"Z[t-i]" -> "Outcome[t-i]"
"Z[t-i]" -> "Restrictions[t-1]"
"Z[t-i]" -> "Restrictions[t-i]"
"Z[t-i]" -> "Z[t-1]"
"Z[t]" -> "Outcome[t]"
"Z[t]" -> "Restrictions[t]"
}
')
<- simple_dag %>%
simple_dag_plot tidy_dagitty() %>%
mutate(var_type = case_when(
str_detect(name, "Outcome") ~ "Outcome",
str_detect(name, "Restrictions") ~ "Restrictions",
str_detect(name, "Z") ~ "Z"
%>%
)) mutate(time_period = case_when(
str_detect(name, "t-1") ~ 2,
str_detect(name, "t-i") ~ 1,
TRUE ~ 3
%>%
)) mutate(arrow_color = case_when(
== "Restrictions[t-1]" & to == "Outcome[t]" ~ "#FF4136",
name TRUE ~ "grey60"
%>%
)) mutate(letter_only = case_when(
str_detect(name, "Outcome") ~ str_replace(name, "Outcome", "Y"),
str_detect(name, "Restrictions") ~ str_replace(name, "Restrictions", "X"),
TRUE ~ name
))
<- ggplot(simple_dag_plot, aes(x = x, y = y, xend = xend, yend = yend)) +
simple_dag_out geom_dag_edges(aes(edge_colour = arrow_color)) +
geom_dag_point(aes(color = var_type, alpha = time_period), size = 12) +
geom_dag_text(data = filter(simple_dag_plot, var_type == "Outcome"),
color = "black", size = pts(11), parse = TRUE,
nudge_y = 0.2, nudge_x = 0.3) +
geom_dag_text(data = filter(simple_dag_plot, var_type == "Restrictions"),
color = "black", size = pts(11), parse = TRUE,
nudge_y = -0.25) +
geom_dag_text(data = filter(simple_dag_plot, var_type == "Z"),
color = "black", size = pts(11), parse = TRUE,
nudge_y = 0) +
scale_color_manual(values = c("#B10DC9", "#FF851B", "grey60")) +
guides(alpha = FALSE, color = FALSE) +
theme_dag()
simple_dag_out
<- ggplot(simple_dag_plot, aes(x = x, y = y, xend = xend, yend = yend)) +
simple_dag_letters_out geom_dag_edges(aes(edge_colour = arrow_color)) +
geom_dag_point(aes(color = var_type, alpha = time_period), size = 12) +
geom_dag_text(aes(label = letter_only),
color = "black", size = pts(11), parse = TRUE) +
scale_color_manual(values = c("#B10DC9", "#FF851B", "grey60")) +
guides(alpha = FALSE, color = FALSE) +
theme_dag()
simple_dag_letters_out
ggsave(here("analysis", "output", "dag_simple_letters.pdf"), simple_dag_letters_out,
width = 7, height = 3.75, device = cairo_pdf)
ggsave(here("analysis", "output", "dag_simple_letters.png"), simple_dag_letters_out,
width = 7, height = 3.75, dpi = 300, type = "cairo")
These DAGs are complex—especially the one with every possible node. However, they have important analytical value. We cannot randomly assign countries to impose anti-NGO laws or restrict the environment for civil society—doing that is completely infeasable (and unethical!). This means that we cannot use experimental data to measure the causal effect of anti-NGO restrictions on foreign aid, or \(E[\text{Aid} \mid do(\text{Restrictions})]\). We also don’t have any quasi-experimental situations that would allow for context-based identification of the effect of restrictions on aid.
Simply measuring \(E[\text{Aid} \mid \text{Restrictions}]\) is trivial—just run lm(aid ~ restrictions)
and look at the coefficient. However, this estimate cannot be interpreted in any sort of causal way, since correlation is not causation. Using the logic of do-calculus, we can actually use the relationships between the nodes in the DAG to transform \(E[\text{Aid} \mid do(\text{Restrictions})]\) into a do-free expression by making statistical adjustments and closing backdoor pathways that open up spurious relationships between restrictions and aid. As long as we can find a minimally sufficient adjustment set—or a set of nodes or variables that need to be adjusted in order to ensure that restrictions is d-separated from aid—we can isolate and identify the causal link between restrictions and aid.
Rather than go through the complex math behind the three rules of do-calculus, we can use R (or dagitty.net) to identify minimal sufficient adjustment sets based on the three DAGs above.
Huge complicated DAG:
%>%
huge_messy_dag adjustmentSets()
## { Corruption[t-1], Democracy[t-1], Disasters[t-1], Education[t-1],
## GDP/capita[t-1], Health[t-1], Mortality[t-1], Restrictions[t-i], Trade[t-1],
## Violence[t-1], `Civil liberties`[t-1], `Internal conflict`[t-1], `Rule of
## law`[t-1] }
Simpler-ish DAG:
%>%
simplerish_dag adjustmentSets()
## { Outcome[t-i], Restrictions[t-i], `Economics & development`[t-1], `Human rights
## & politics`[t-1], `Unexpected shocks`[t-1] }
Simple DAG:
%>%
simple_dag adjustmentSets()
## { Outcome[t-i], Restrictions[t-i], Z[t-1] }
In other words, if we want to isolate the causal effect of anti-NGO restrictions in time \(t\) on aid in time \(t+1\) (i.e. the effect of lagged restrictions), we need to adjust for lagged aid (\(t-1\)), lagged restrictions (\(t-1\)), and time-varying confounders (\(t\)).
Fortunately, marginal structural models allow us to make all of these adjustments using special inverse probability weights that take this lagging structure and treatment history into account.
\[ \text{Continuous stabilized IPW}_{it} = \prod^t_{t = 1} \frac{f_{X | \bar{X}, V}[(X_{it} | \bar{X}_{i, t-1}, V_i); \mu_1, \sigma^2_1]}{f_{X | \bar{X}, Y, Z, V}[(X_{it} | \bar{X}_{i, t-1}, Y_{i, t-1}, Z_{it}, V_i), \mu_2, \sigma^2_2]} \]
Finally, these weights are used in an outcome model similar to this:
lm(outcome ~ lag_treatment, weights = ipw)
Doing this process closes the backdoor pathways between lagged restrictions and present aid and is theoretically sufficient for isolating the causal link between the two.
Based on these DAGs, here are the variables we use in our treatment and outcome models:
total_oda_lead
and total_oda_log_lead
)prop_contentious
)prop_ngo_dom
and prop_ngo_foreign
)barriers_total
and v2xcs_ccsi
)v2x_polyarchy
v2x_corr
v2x_rule
v2x_civlib
v2x_clphy
v2x_clpriv
gdpcap_log
un_trade_pct_gdp
v2peedueq
v2pehealth
e_peinfmor
internal_conflict_past_5
natural_dis_count
(1 | gwcode)
)