Survey distribution across groups
The 809 participants were distributed amongst three slightly different surveys (Group 1 N = 267, Group 2 N = 273, Group 3 N = 269).
Participant demographics
summarize_demographic <- function(variable) {
enquo_variable <- enquo(variable)
survey_clean %>%
group_by(!!enquo_variable) %>%
summarize(Frequency = n()) %>%
mutate(Percentage = Frequency / sum(Frequency),
`Cumulative %` = cumsum(Percentage)) %>%
mutate(Demographics = as.character(!!enquo_variable)) %>%
select(Demographics, everything(), -!!enquo_variable)
}
title.row <- function(x) {
data_frame(Demographics = as.character(x), Frequency = NA,
Percentage = NA, `Cumulative %` = NA)
}
dem.sex <- summarize_demographic(variable = sex)
dem.age <- summarize_demographic(variable = age_cat)
dem.race <- summarize_demographic(variable = race)
dem.education <- summarize_demographic(variable = education)
dem.republican <- summarize_demographic(variable = republican) %>%
mutate(Demographics = ifelse(is.na(Demographics), "Missing", Demographics))
dem.democrat <- summarize_demographic(variable = democrat) %>%
mutate(Demographics = ifelse(is.na(Demographics), "Missing", Demographics))
dem.full <- bind_rows(title.row("Sex"), dem.sex,
title.row("Age"), dem.age,
title.row("Race/Ethnicity"), dem.race,
title.row("Education"), dem.education,
title.row("Republican"), dem.republican,
title.row("Democrat"), dem.democrat) %>%
mutate(Percentage = ifelse(!is.na(Frequency),
scales::percent(Percentage), NA),
`Cumulative %` = ifelse(!is.na(Frequency),
scales::percent(`Cumulative %`), NA),
Demographics = ifelse(is.na(Frequency),
pandoc.strong.return(Demographics),
Demographics))
Participant demographics
Sex |
|
|
|
Male |
396 |
48.9% |
48.9% |
Female |
413 |
51.1% |
100.0% |
Age |
|
|
|
18–29 |
123 |
15.2% |
15.2% |
30–44 |
204 |
25.2% |
40.4% |
45–59 |
241 |
29.8% |
70.2% |
60+ |
241 |
29.8% |
100.0% |
Race/Ethnicity |
|
|
|
White/non-Hispanic |
579 |
71.6% |
71.6% |
Other race specified |
230 |
28.4% |
100.0% |
Education |
|
|
|
Less than high school |
97 |
12.0% |
12.0% |
High school |
256 |
31.6% |
43.6% |
Some college |
223 |
27.6% |
71.2% |
Bachelor’s degree or above |
233 |
28.8% |
100.0% |
Republican |
|
|
|
Republican |
321 |
39.7% |
39.7% |
Not Republican |
468 |
57.8% |
97.5% |
Missing |
20 |
2.5% |
100.0% |
Democrat |
|
|
|
Democrat |
438 |
54.1% |
54.1% |
Not Democrat |
351 |
43.4% |
97.5% |
Missing |
20 |
2.5% |
100.0% |
Personality means for entire sample
df_personality_raw <- survey_clean %>%
select(OPENNESS, CONSCIENTIOUSNESS, EXTRAVERSION, AGREEABLENESS, NEUROTICISM)
personality_alphas <- psych::alpha(as.data.frame(df_personality_raw),
check.keys = TRUE, warnings = FALSE)$alpha.drop %>%
select(raw_alpha) %>%
mutate(Trait = gsub("-", "", rownames(.)))
df_personality <- df_personality_raw %>%
summarise_all(funs(mean = mean(., na.rm = TRUE),
SD = sd(., na.rm = TRUE),
N = sum(!is.na(.)))) %>%
mutate_all(as.numeric) %>%
gather(key, value) %>%
separate(key, c("Trait", "key"), sep = "_") %>%
spread(key, value) %>%
left_join(personality_alphas, by = "Trait") %>%
mutate(Trait = str_to_title(Trait)) %>%
mutate(Trait = factor(Trait, levels = c("Openness", "Conscientiousness",
"Extraversion", "Agreeableness",
"Neuroticism"),
ordered = TRUE)) %>%
arrange(Trait) %>%
select(Trait, `Sample mean` = mean, SD, `Cronbach’s α` = raw_alpha, N)
Personality mean scores for entire sample
Openness |
0.72 |
0.13 |
0.65 |
760 |
Conscientiousness |
0.78 |
0.13 |
0.61 |
763 |
Extraversion |
0.63 |
0.16 |
0.68 |
755 |
Agreeableness |
0.79 |
0.12 |
0.62 |
753 |
Neuroticism |
0.54 |
0.16 |
0.59 |
771 |
LS0tCnRpdGxlOiAiU3VtbWFyeSBzdGF0aXN0aWNzIgphdXRob3I6ICJNZXJlZGl0aCBDb25yb3kgYW5kIEFuZHJldyBIZWlzcyIKZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCAnJUIgJWUsICVZJylgIgplZGl0b3Jfb3B0aW9uczogCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUKLS0tCgpgYGB7ciBzZXR1cCwgbWVzc2FnZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGNhY2hlID0gRkFMU0UsIGZpZy5yZXRpbmEgPSAyLAogICAgICAgICAgICAgICAgICAgICAgdGlkeS5vcHRzID0gbGlzdCh3aWR0aC5jdXRvZmYgPSAxMjApLCAgIyBGb3IgY29kZQogICAgICAgICAgICAgICAgICAgICAgd2lkdGggPSAxMjApICAjIEZvciBvdXRwdXQKYGBgCgpgYGB7ciBsb2FkLWxpYnJhcmllcy1kYXRhLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShwYW5kZXIpCmxpYnJhcnkocHN5Y2gpCmxpYnJhcnkoaGVyZSkKCnNvdXJjZShmaWxlLnBhdGgoaGVyZSgpLCAibGliIiwgInBhbmRlcl9vcHRpb25zLlIiKSkKCnN1cnZleV9jbGVhbiA8LSByZWFkUkRTKGZpbGUucGF0aChoZXJlKCksICJEYXRhIiwgInN1cnZleV9jbGVhbi5yZHMiKSkKYGBgCgoKIyMgU3VydmV5IGRpc3RyaWJ1dGlvbiBhY3Jvc3MgZ3JvdXBzCgpgYGB7ciBncm91cC1pbmZvfQpkZW0uZ3JvdXBzIDwtIHN1cnZleV9jbGVhbiAlPiUKICBncm91cF9ieShjb25kaXRpb24pICU+JQogIHN1bW1hcmlzZSh0b3RhbCA9IG4oKSkKYGBgCgo+IFRoZSBgciBucm93KHN1cnZleV9jbGVhbilgIHBhcnRpY2lwYW50cyB3ZXJlIGRpc3RyaWJ1dGVkIGFtb25nc3QgdGhyZWUgc2xpZ2h0bHkgZGlmZmVyZW50IHN1cnZleXMgKEdyb3VwIDEgTiA9IGByIGZpbHRlcihkZW0uZ3JvdXBzLCBjb25kaXRpb24gPT0gMSkkdG90YWxgLCBHcm91cCAyIE4gPSBgciBmaWx0ZXIoZGVtLmdyb3VwcywgY29uZGl0aW9uID09IDIpJHRvdGFsYCwgR3JvdXAgMyBOID0gYHIgZmlsdGVyKGRlbS5ncm91cHMsIGNvbmRpdGlvbiA9PSAzKSR0b3RhbGApLgoKCiMjIFBhcnRpY2lwYW50IGRlbW9ncmFwaGljcwoKYGBge3IgcHJvY2Vzcy1kZW1vZ3JhcGhpY3N9CnN1bW1hcml6ZV9kZW1vZ3JhcGhpYyA8LSBmdW5jdGlvbih2YXJpYWJsZSkgewogIGVucXVvX3ZhcmlhYmxlIDwtIGVucXVvKHZhcmlhYmxlKQogIAogIHN1cnZleV9jbGVhbiAlPiUgCiAgICBncm91cF9ieSghIWVucXVvX3ZhcmlhYmxlKSAlPiUgCiAgICBzdW1tYXJpemUoRnJlcXVlbmN5ID0gbigpKSAlPiUKICAgIG11dGF0ZShQZXJjZW50YWdlID0gRnJlcXVlbmN5IC8gc3VtKEZyZXF1ZW5jeSksCiAgICAgICAgICAgYEN1bXVsYXRpdmUgJWAgPSBjdW1zdW0oUGVyY2VudGFnZSkpICU+JQogICAgbXV0YXRlKERlbW9ncmFwaGljcyA9IGFzLmNoYXJhY3RlcighIWVucXVvX3ZhcmlhYmxlKSkgJT4lIAogICAgc2VsZWN0KERlbW9ncmFwaGljcywgZXZlcnl0aGluZygpLCAtISFlbnF1b192YXJpYWJsZSkKfQoKdGl0bGUucm93IDwtIGZ1bmN0aW9uKHgpIHsKICBkYXRhX2ZyYW1lKERlbW9ncmFwaGljcyA9IGFzLmNoYXJhY3Rlcih4KSwgRnJlcXVlbmN5ID0gTkEsCiAgICAgICAgICAgICBQZXJjZW50YWdlID0gTkEsIGBDdW11bGF0aXZlICVgID0gTkEpCn0KCmRlbS5zZXggPC0gc3VtbWFyaXplX2RlbW9ncmFwaGljKHZhcmlhYmxlID0gc2V4KQpkZW0uYWdlIDwtIHN1bW1hcml6ZV9kZW1vZ3JhcGhpYyh2YXJpYWJsZSA9IGFnZV9jYXQpCmRlbS5yYWNlIDwtIHN1bW1hcml6ZV9kZW1vZ3JhcGhpYyh2YXJpYWJsZSA9IHJhY2UpCmRlbS5lZHVjYXRpb24gPC0gc3VtbWFyaXplX2RlbW9ncmFwaGljKHZhcmlhYmxlID0gZWR1Y2F0aW9uKQpkZW0ucmVwdWJsaWNhbiA8LSBzdW1tYXJpemVfZGVtb2dyYXBoaWModmFyaWFibGUgPSByZXB1YmxpY2FuKSAlPiUKICBtdXRhdGUoRGVtb2dyYXBoaWNzID0gaWZlbHNlKGlzLm5hKERlbW9ncmFwaGljcyksICJNaXNzaW5nIiwgRGVtb2dyYXBoaWNzKSkKZGVtLmRlbW9jcmF0IDwtIHN1bW1hcml6ZV9kZW1vZ3JhcGhpYyh2YXJpYWJsZSA9IGRlbW9jcmF0KSAlPiUKICBtdXRhdGUoRGVtb2dyYXBoaWNzID0gaWZlbHNlKGlzLm5hKERlbW9ncmFwaGljcyksICJNaXNzaW5nIiwgRGVtb2dyYXBoaWNzKSkKCmRlbS5mdWxsIDwtIGJpbmRfcm93cyh0aXRsZS5yb3coIlNleCIpLCBkZW0uc2V4LCAKICAgICAgICAgICAgICAgICAgICAgIHRpdGxlLnJvdygiQWdlIiksIGRlbS5hZ2UsIAogICAgICAgICAgICAgICAgICAgICAgdGl0bGUucm93KCJSYWNlL0V0aG5pY2l0eSIpLCBkZW0ucmFjZSwKICAgICAgICAgICAgICAgICAgICAgIHRpdGxlLnJvdygiRWR1Y2F0aW9uIiksIGRlbS5lZHVjYXRpb24sCiAgICAgICAgICAgICAgICAgICAgICB0aXRsZS5yb3coIlJlcHVibGljYW4iKSwgZGVtLnJlcHVibGljYW4sCiAgICAgICAgICAgICAgICAgICAgICB0aXRsZS5yb3coIkRlbW9jcmF0IiksIGRlbS5kZW1vY3JhdCkgJT4lCiAgbXV0YXRlKFBlcmNlbnRhZ2UgPSBpZmVsc2UoIWlzLm5hKEZyZXF1ZW5jeSksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNjYWxlczo6cGVyY2VudChQZXJjZW50YWdlKSwgTkEpLAogICAgICAgICBgQ3VtdWxhdGl2ZSAlYCA9IGlmZWxzZSghaXMubmEoRnJlcXVlbmN5KSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNjYWxlczo6cGVyY2VudChgQ3VtdWxhdGl2ZSAlYCksIE5BKSwKICAgICAgICAgRGVtb2dyYXBoaWNzID0gaWZlbHNlKGlzLm5hKEZyZXF1ZW5jeSksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFuZG9jLnN0cm9uZy5yZXR1cm4oRGVtb2dyYXBoaWNzKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlbW9ncmFwaGljcykpCmBgYAoKYGBge3Igc2hvdy1kZW1vZ3JhcGhpY3MsIHJlc3VsdHM9ImFzaXMifQpjYXB0aW9uIDwtICJQYXJ0aWNpcGFudCBkZW1vZ3JhcGhpY3MiCnRibC5kZW1vZ3JhcGhpY3MgPC0gcGFuZG9jLnRhYmxlLnJldHVybihkZW0uZnVsbCwgY2FwdGlvbiA9IGNhcHRpb24sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBqdXN0aWZ5ID0gImxjY2MiKQoKY2F0KHRibC5kZW1vZ3JhcGhpY3MpCmNhdCh0YmwuZGVtb2dyYXBoaWNzLCBmaWxlID0gZmlsZS5wYXRoKGhlcmUoKSwgIk91dHB1dCIsICJ0YWJsZV9kZW1vZ3JhcGhpY3MubWQiKSkKYGBgCgoKIyMgUGVyc29uYWxpdHkgbWVhbnMgZm9yIGVudGlyZSBzYW1wbGUKCmBgYHtyIHByb2Nlc3MtcGVyc29uYWxpdHktbWVhbi1zY29yZXN9CmRmX3BlcnNvbmFsaXR5X3JhdyA8LSBzdXJ2ZXlfY2xlYW4gJT4lCiAgc2VsZWN0KE9QRU5ORVNTLCBDT05TQ0lFTlRJT1VTTkVTUywgRVhUUkFWRVJTSU9OLCBBR1JFRUFCTEVORVNTLCBORVVST1RJQ0lTTSkKCnBlcnNvbmFsaXR5X2FscGhhcyA8LSBwc3ljaDo6YWxwaGEoYXMuZGF0YS5mcmFtZShkZl9wZXJzb25hbGl0eV9yYXcpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNoZWNrLmtleXMgPSBUUlVFLCB3YXJuaW5ncyA9IEZBTFNFKSRhbHBoYS5kcm9wICU+JQogIHNlbGVjdChyYXdfYWxwaGEpICU+JQogIG11dGF0ZShUcmFpdCA9IGdzdWIoIi0iLCAiIiwgcm93bmFtZXMoLikpKQoKZGZfcGVyc29uYWxpdHkgPC0gZGZfcGVyc29uYWxpdHlfcmF3ICU+JQogIHN1bW1hcmlzZV9hbGwoZnVucyhtZWFuID0gbWVhbiguLCBuYS5ybSA9IFRSVUUpLAogICAgICAgICAgICAgICAgICAgICBTRCA9IHNkKC4sIG5hLnJtID0gVFJVRSksCiAgICAgICAgICAgICAgICAgICAgIE4gPSBzdW0oIWlzLm5hKC4pKSkpICU+JQogIG11dGF0ZV9hbGwoYXMubnVtZXJpYykgJT4lCiAgZ2F0aGVyKGtleSwgdmFsdWUpICU+JQogIHNlcGFyYXRlKGtleSwgYygiVHJhaXQiLCAia2V5IiksIHNlcCA9ICJfIikgJT4lCiAgc3ByZWFkKGtleSwgdmFsdWUpICU+JQogIGxlZnRfam9pbihwZXJzb25hbGl0eV9hbHBoYXMsIGJ5ID0gIlRyYWl0IikgJT4lCiAgbXV0YXRlKFRyYWl0ID0gc3RyX3RvX3RpdGxlKFRyYWl0KSkgJT4lCiAgbXV0YXRlKFRyYWl0ID0gZmFjdG9yKFRyYWl0LCBsZXZlbHMgPSBjKCJPcGVubmVzcyIsICJDb25zY2llbnRpb3VzbmVzcyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiRXh0cmF2ZXJzaW9uIiwgIkFncmVlYWJsZW5lc3MiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5ldXJvdGljaXNtIiksIAogICAgICAgICAgICAgICAgICAgICAgICBvcmRlcmVkID0gVFJVRSkpICU+JQogIGFycmFuZ2UoVHJhaXQpICU+JQogIHNlbGVjdChUcmFpdCwgYFNhbXBsZSBtZWFuYCA9IG1lYW4sIFNELCBgQ3JvbmJhY2jigJlzIM6xYCA9IHJhd19hbHBoYSwgTikKYGBgCgpgYGB7ciBzaG93LXBlcnNvbmFsaXR5LW1lYW4tc2NvcmVzLCByZXN1bHRzPSJhc2lzIn0KY2FwdGlvbiA8LSAiUGVyc29uYWxpdHkgbWVhbiBzY29yZXMgZm9yIGVudGlyZSBzYW1wbGUiCnRibF9wZXJzb25hbGl0eSA8LSBwYW5kb2MudGFibGUucmV0dXJuKGRmX3BlcnNvbmFsaXR5LCBjYXB0aW9uID0gY2FwdGlvbiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAganVzdGlmeSA9ICJsY2NjYyIsIGRpZ2l0cyA9IDIpCgpjYXQodGJsX3BlcnNvbmFsaXR5KQpjYXQodGJsX3BlcnNvbmFsaXR5LCBmaWxlID0gZmlsZS5wYXRoKGhlcmUoKSwgIk91dHB1dCIsICJ0YWJsZV9wZXJzb25hbGl0eS5tZCIpKQpgYGAK