library(tidyverse)
library(haven)
library(lme4)
library(broom)
library(broom.mixed)
library(emmeans)
library(brms)
library(tidybayes)
library(modelsummary)
library(kableExtra)
library(patchwork)
library(here)
options(
mc.cores = 4,
brms.backend = "cmdstanr"
)
ssq <- read_stata(here("data", "Final.9.26.2016.dta"))
Bayesian versions of original models
Table 3
table_3_b <- brm(
bf(f_Overall3P ~ wingos + whrnoposmgoldtotal +
(wingos * whrnoposmgoldtotal) +
cedaw_rat_1 + log_gdp + log_pop + polity2 +
overallglobalizationindex + (1 | ccode),
decomp = "QR"),
data = ssq,
family = "gaussian",
chains = 4)
tidy(table_3_b) %>%
kbl() %>%
kable_styling()
effect
|
component
|
group
|
term
|
estimate
|
std.error
|
conf.low
|
conf.high
|
fixed
|
cond
|
NA
|
(Intercept)
|
0.2863300
|
2.3472551
|
-4.4235070
|
4.6888592
|
fixed
|
cond
|
NA
|
wingos
|
0.0175739
|
0.0061941
|
0.0055428
|
0.0296754
|
fixed
|
cond
|
NA
|
whrnoposmgoldtotal
|
-0.0173717
|
0.0106123
|
-0.0379116
|
0.0033147
|
fixed
|
cond
|
NA
|
cedaw_rat_1
|
1.0270168
|
0.5979503
|
-0.1969347
|
2.2089430
|
fixed
|
cond
|
NA
|
log_gdp
|
-0.2149541
|
0.1703789
|
-0.5533549
|
0.1163722
|
fixed
|
cond
|
NA
|
log_pop
|
0.2010756
|
0.1175592
|
-0.0241090
|
0.4330191
|
fixed
|
cond
|
NA
|
polity2
|
0.0695767
|
0.0245524
|
0.0197258
|
0.1169868
|
fixed
|
cond
|
NA
|
overallglobalizationindex
|
0.0945391
|
0.0168001
|
0.0622672
|
0.1281644
|
fixed
|
cond
|
NA
|
wingos:whrnoposmgoldtotal
|
0.0002117
|
0.0001606
|
-0.0000983
|
0.0005308
|
ran_pars
|
cond
|
ccode
|
sd__(Intercept)
|
1.6011981
|
0.1256395
|
1.3736490
|
1.8682823
|
ran_pars
|
cond
|
Residual
|
sd__Observation
|
1.4891239
|
0.0390635
|
1.4152690
|
1.5680955
|
Marginal effects
ame1 <- table_3_b %>%
emtrends(~ whrnoposmgoldtotal,
var = "wingos",
at = list(whrnoposmgoldtotal = seq(0, 107, 1)),
epred = TRUE) %>%
gather_emmeans_draws()
plot_ame1 <- ggplot(ame1, aes(x = whrnoposmgoldtotal, y = .value)) +
stat_lineribbon() +
geom_hline(yintercept = 0) +
labs(x = "Women's INGO shaming", y = "Marginal effect of INGO presence",
title = "Panel A: 3P index", fill = "Credible interval") +
coord_cartesian(ylim = c(-0.05, 0.1)) +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
legend.position = "bottom")
ame2 <- table_3_b %>%
emtrends(~ wingos,
var = "whrnoposmgoldtotal",
at = list(wingos = seq(0, 107, 1)),
epred = TRUE) %>%
gather_emmeans_draws()
plot_ame2 <- ggplot(ame2, aes(x = wingos, y = .value)) +
stat_lineribbon() +
geom_hline(yintercept = 0) +
guides(fill = "none") +
labs(x = "Women's INGO presence", y = "Marginal effect of shaming",
title = "Panel B: 3P index") +
coord_cartesian(ylim = c(-0.05, 0.05)) +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank())
plot_ame1 | plot_ame2
Binary treatment
Basic MSMs
Official Bayesian MSMs
LS0tCnRpdGxlOiAiRXh0ZW5zaW9ucyBvZiBCZWxsIGFuZCBCYW5rcyAoMjAxOCkiCmJpYmxpb2dyYXBoeTogcmVmZXJlbmNlcy5iaWIKbGluay1jaXRhdGlvbnM6IHllcwpvdXRwdXQ6IAogIGJvb2tkb3duOjpodG1sX2RvY3VtZW50MjoKICAgIGNvZGVfZm9sZGluZzogaGlkZQplZGl0b3Jfb3B0aW9uczogCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUKLS0tCgpgYGB7ciBsaWJyYXJpZXMtZGF0YSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoaGF2ZW4pCmxpYnJhcnkobG1lNCkKbGlicmFyeShicm9vbSkKbGlicmFyeShicm9vbS5taXhlZCkKbGlicmFyeShlbW1lYW5zKQpsaWJyYXJ5KGJybXMpCmxpYnJhcnkodGlkeWJheWVzKQpsaWJyYXJ5KG1vZGVsc3VtbWFyeSkKbGlicmFyeShrYWJsZUV4dHJhKQpsaWJyYXJ5KHBhdGNod29yaykKbGlicmFyeShoZXJlKQoKb3B0aW9ucygKICBtYy5jb3JlcyA9IDQsCiAgYnJtcy5iYWNrZW5kID0gImNtZHN0YW5yIgopCgpzc3EgPC0gcmVhZF9zdGF0YShoZXJlKCJkYXRhIiwgIkZpbmFsLjkuMjYuMjAxNi5kdGEiKSkKYGBgCgojIyBCYXllc2lhbiB2ZXJzaW9ucyBvZiBvcmlnaW5hbCBtb2RlbHMKCiMjIyBUYWJsZSAzCgpgYGB7ciBtb2RlbC0zcHMsIHJlc3VsdHM9ImhpZGUiLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQojfCBjbGFzcy5zb3VyY2UgPSAiZm9sZC1zaG93Igp0YWJsZV8zX2IgPC0gYnJtKAogIGJmKGZfT3ZlcmFsbDNQIH4gd2luZ29zICsgd2hybm9wb3NtZ29sZHRvdGFsICsgCiAgICAgICAod2luZ29zICogd2hybm9wb3NtZ29sZHRvdGFsKSArIAogICAgICAgY2VkYXdfcmF0XzEgKyBsb2dfZ2RwICsgbG9nX3BvcCArIHBvbGl0eTIgKwogICAgICAgb3ZlcmFsbGdsb2JhbGl6YXRpb25pbmRleCArICgxIHwgY2NvZGUpLAogICAgIGRlY29tcCA9ICJRUiIpLCAKICBkYXRhID0gc3NxLAogIGZhbWlseSA9ICJnYXVzc2lhbiIsCiAgY2hhaW5zID0gNCkKYGBgCgpgYGB7ciBzaG93LW1vZGVsLTNwcy1yZXN1bHRzLCB3YXJuaW5nPUZBTFNFfQp0aWR5KHRhYmxlXzNfYikgJT4lIAogIGtibCgpICU+JSAKICBrYWJsZV9zdHlsaW5nKCkKYGBgCgoKIyMjIE1hcmdpbmFsIGVmZmVjdHMKCmBgYHtyIGJheWVzaWFuLWZpZ3VyZS0yLCBmaWcud2lkdGg9OSwgZmlnLmhlaWdodD00LjUsIGZpZy5hbGlnbj0iY2VudGVyIiwgbWVzc2FnZT1GQUxTRX0KYW1lMSA8LSB0YWJsZV8zX2IgJT4lIAogIGVtdHJlbmRzKH4gd2hybm9wb3NtZ29sZHRvdGFsLAogICAgICAgICAgIHZhciA9ICJ3aW5nb3MiLAogICAgICAgICAgIGF0ID0gbGlzdCh3aHJub3Bvc21nb2xkdG90YWwgPSBzZXEoMCwgMTA3LCAxKSksCiAgICAgICAgICAgZXByZWQgPSBUUlVFKSAlPiUgCiAgZ2F0aGVyX2VtbWVhbnNfZHJhd3MoKQoKcGxvdF9hbWUxIDwtIGdncGxvdChhbWUxLCBhZXMoeCA9IHdocm5vcG9zbWdvbGR0b3RhbCwgeSA9IC52YWx1ZSkpICsKICBzdGF0X2xpbmVyaWJib24oKSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gMCkgKwogIGxhYnMoeCA9ICJXb21lbidzIElOR08gc2hhbWluZyIsIHkgPSAiTWFyZ2luYWwgZWZmZWN0IG9mIElOR08gcHJlc2VuY2UiLAogICAgICAgdGl0bGUgPSAiUGFuZWwgQTogM1AgaW5kZXgiLCBmaWxsID0gIkNyZWRpYmxlIGludGVydmFsIikgKwogIGNvb3JkX2NhcnRlc2lhbih5bGltID0gYygtMC4wNSwgMC4xKSkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICJib3R0b20iKQoKYW1lMiA8LSB0YWJsZV8zX2IgJT4lIAogIGVtdHJlbmRzKH4gd2luZ29zLAogICAgICAgICAgIHZhciA9ICJ3aHJub3Bvc21nb2xkdG90YWwiLAogICAgICAgICAgIGF0ID0gbGlzdCh3aW5nb3MgPSBzZXEoMCwgMTA3LCAxKSksCiAgICAgICAgICAgZXByZWQgPSBUUlVFKSAlPiUgCiAgZ2F0aGVyX2VtbWVhbnNfZHJhd3MoKQoKcGxvdF9hbWUyIDwtIGdncGxvdChhbWUyLCBhZXMoeCA9IHdpbmdvcywgeSA9IC52YWx1ZSkpICsKICBzdGF0X2xpbmVyaWJib24oKSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gMCkgKwogIGd1aWRlcyhmaWxsID0gIm5vbmUiKSArCiAgbGFicyh4ID0gIldvbWVuJ3MgSU5HTyBwcmVzZW5jZSIsIHkgPSAiTWFyZ2luYWwgZWZmZWN0IG9mIHNoYW1pbmciLAogICAgICAgdGl0bGUgPSAiUGFuZWwgQjogM1AgaW5kZXgiKSArCiAgY29vcmRfY2FydGVzaWFuKHlsaW0gPSBjKC0wLjA1LCAwLjA1KSkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpKQoKcGxvdF9hbWUxIHwgcGxvdF9hbWUyCmBgYAoKCiMjIEJpbmFyeSB0cmVhdG1lbnQKCgoKIyMgQmFzaWMgTVNNcwoKCgojIyBPZmZpY2lhbCBCYXllc2lhbiBNU01zCgo=